【www.twxqccs.com武汉纯水设备】渣滓渗滤液是指来源于渣滓填埋场中渣滓本身含有的水份、进入填埋场的雨雪水及其他水分,扣除渣滓、覆土层的饱和持水量,并阅历渣滓层和覆土层而构成的一种高浓度有机废水。其成分复杂,污染物浓度高、色度大、毒性强,不只含有大量的有机污染物,还含有各类重金属污染物,假设处置不当,不但影响地表水的质量,还会危及的公开水的安全。而渣滓渗滤液的性质随着填埋场的当地气候、运转时间的不同而发作着变化,如何处置妥善不时是填埋场设计、运转和管理中非常棘手的问题。
近年来随着人们的生死程度进步,城市渣滓总量逐年增加,迫使许多中央不得不兴建更多新的渣滓填埋场和熄灭厂,随之而来的渣滓渗滤液处置难题也日渐棘手,俨然曾经成为一个急迫的环境问题。
目前,渗透液的处置方式主要包括回灌、浓缩以及无害化处置3种。其中,浓缩处置主要是以基于膜技术和蒸发技术为基础的减量方法;无害化处置主要涵盖混凝/电絮凝、吸附以及高级氧化等技术中止。
回灌
回灌是目前国内普遍应用的渗滤液处置方法之一。武汉纯水设备是将渗滤液搜集后,再返回到填埋场中,经过自然蒸发减少滤液,并经过渣滓层和埋土层发作生物、物理、化学等作用截留污染物的过程。
回灌能净化渗滤液,减少渗滤液的水量,大大降低渗滤液处置费用。能加速填埋场内渣滓降解,进步填埋场产甲烷的速率和甲烷的产生量,增大填埋场的沉降速率和总沉降幅度,缩短填埋场的维护期。固然渗滤液液回灌技术可促进可降解有机物的降解,但同时会招致出水COD、电导率以及NH4+、Cl-等的富集;随着回灌工作的中止,各类污染物会接近或抵达吸附总容量,从而惹起出水的电导率高于回灌进水。这一现象将对后续的反渗透等渗滤液处置过程产生明显的负面效应。更重要的是,回灌将可能构成公开水污染。因此,关于回灌技术目前主要采用控制频率、控制总量的办法适度回灌、部分回灌但不适用于大比例全回灌。
浓缩
常见的浓缩技术可分为膜技术和蒸发技术两大类。
生物处置+膜处置工艺
(1)工艺流程:预处置→微生物处置→膜吸附过滤
(2)典型工艺:中温厌氧系统 +MBR+RO
(3)工艺内容:渣滓渗滤液经过调理池流入到中温厌氧池,经大分子有机污染物降解后进入缺氧段 MBR 反映器中,与回流水混合进入好氧段 MBR 中止曝气,去除渗滤液中的 TN,好氧池出水进入 MBR 分别器,将分别的污泥浓液回流至 MBR 缺氧段, MBR 出水进入反渗透系统,渗滤液经反渗透处置后完成达标排放。
全膜法过滤处置工艺
(1)工艺流程:预处置→两级反渗透膜过滤
(2)典型工艺:两级 DTRO 反渗透处置工艺
(3)工艺描画:渣滓填埋场渗滤液原液经由调理池进入到高压泵后,经过循环高压泵进入到一级 DTRO 反渗透膜过滤,出水后进入到二级 DTRO 反渗透系统,经两级反渗透过滤后出水达标排放,循环进入到系统中止处置。一级浓液回灌渣滓填埋区中止集中处置,二级浓液回流到总进水口,系统总产水率在 60% 左右。
低耗蒸发 + 离子交流处置工艺
(1)工艺流程:预过滤→蒸汽紧缩分别水→吸收气体氨
(2)典型工艺:MVC 蒸发 + 离子交流
(3)工艺内容:填埋场渣滓渗滤液经调理池过滤器在线反冲过滤,除去渗滤液中的 SS、纤维,进步去除效率,再经 MVC 紧缩蒸发原理,将渗滤液中的污染物与水分别,武汉工业纯水设备完成水质净化效果。经过特种树脂去除蒸馏水中的氨,抵达水质的全面达标排放。在 MVC 蒸发过程中排出挥发性气体氨,应用离子交流系统吸收渗滤液中剩余盐酸气体。
技术优缺陷
生物处置 + 膜深度处置工艺:
其工艺原理为生化反映和物理处置工艺,由于生化系统运转过程中遭到的影响要素较多,需求各单元之间密切和谐配合,该工艺自控程度较高,技术风险较低,但对“老龄化”渗滤液处置难度较大。因此,总体来看该工艺投资较低,主体设备多为国产,污染物总量能够抵达很好削减效果,管理较便利。该工艺的缺乏之处在于出水率较低,增加了回灌的难度;生物处置效果不稳定,生物菌种需求培育、驯化,增加了运转本钱;对“老龄化”渗滤液的生化效果极差;运转不能长时间停运,需求连续运转。
双级 DTRO 反渗透处置工艺:
该工艺具有操作烦琐,能够间歇式运转,自动程度高,易于维护管理;膜产品类型多。其缺乏之处在于对渗滤液原水水质较为敏感,出水率容易遭到 SS、电导率以及温度等要素的影响;两级反渗透处置工艺中,前级预处置缺乏,容易招致反渗透膜堵塞,改换频率高,增加处置本钱;出水率低(正常状态下为 55%-70%),回灌难度大,增加运转本钱。
MVC 蒸发 +DI 离子交流处置工艺
该工艺的优势在于受渗滤液的原始水质影响较小,出水率高,通常以可以抵达 90%,能够做到间歇式运转,自控程度较高、维护简单;浓液量较少。武汉纯水设备缺乏之处是蒸发工艺理论应用较为复杂,电耗等能耗较高,维护本钱较大;设备材质恳求较高,特别是要具有较强的耐强酸、强碱腐蚀性;运转设备噪声较大;后期蒸发罐清洗频次较大,药剂本钱高。
新技术引见:正渗透膜法渣滓渗透液处置
正渗透(FO)技术及设备近年来持续高温,成为各研讨院所的抢手话题。
工艺特性:
无需生化处置,流程短、自动化程度高、运转稳定、出水效果好、部分废物完成资源化‘
工艺流程包括:
预处置系统→FO+HCRO系统→MVR系统以及氨氮吸收系统。
无害化处置
根据处置原理的不同,无害化处置技术可分为物理法和化学法两种。前者包括混凝、电絮凝以及吸附等;后者主要涵盖高级氧化技术。
混凝、电絮凝与吸附
作为一种简单高效的处置技术,混凝可有效去除渗滤液中的可溶性有机物,还能提升出水的可生化性,但不能完好有效地去除有机物。而混凝的效果依赖于凝聚剂及操作条件。研讨人员发现,pH值调控对渗滤液COD的最大去除效率为25%,,Fe3+则可达40%。
与混凝类似,应用电絮凝处置渣滓渗滤液能够有效去除水体中的有机物,相较于混凝,电絮凝反响效率高、去除率高、产生的泥量小、停留时间短、操作便利且无需化学试剂。但是,电絮凝对污染物的去除同样不够彻底。此外,渗滤液浓液中富集的Cl-和HA与FA在电絮凝的过程中可能会生成各种有毒卤代烃。
与膜技术、混凝以及电絮凝类似,吸附过程仅仅将污染物从水体中转移。目前,吸附主要应用于渗滤液处置过程中;常见的吸附剂包括飞灰、膨润土、硅藻土、树脂、沸石以及活性炭等,但受制于吸附材料的选择性,吸附过程仅能有限去除部分污染物。
高级氧化(AOPs)
是经过物理与化学过程产生大量强氧化性自由基,最终氧化降解水体有机污染物以及特定无机污染物的技术。除˙OH外,AOPs还可生成硫酸根自由基、磷酸根自由基、碳酸根自由基以及氯自由基。值得留意的是,水体中的氨氮需应用硫酸根自由基而非˙OH自由基处置。依据反响温度的不同,AOPs可分为常温AOP和高温AOP两类,前者包括臭氧氧化、芬顿氧化、光化学氧化、电化学氧化和超声氧化等;后者包括湿式氧化(WAO)以及超临界水氧化(SCWO)。
高温AOP
高温AOP是在高温高压条件下,武汉工业纯水设备应用氧化剂氧化水中有机污染物的过程;其中,湿式空气氧化法的反响温度与压力分别为180~315,℃、2~15,MPa,而超临界水氧化则分别为>374.3,℃及>22.1,MPa。湿式空气氧化法可有效降解有机物,但不能将之完好降解矿化。以FA和HA为例,三氯苯酚共存的NaNO2催化的湿式空气氧化法可将其有效降解,但不能将之完好氧化。同时,湿式空气氧化法对氮的去除效果高度依赖于催化剂的存在;如Pt基催化剂可选择性的将氨氮而非硝氮转化为N2,Ru基催化剂正好相反。此外,湿式空气氧化法的高温条件会招致腐蚀,而渗滤液中大量存在的Cl-则会加剧这一情况。相较之下,超临界水氧化可将有机物彻底氧化生成CO2和H2O并有效降低中间产物产量;以FA为例,超临界水氧化可将去除效率从湿式空气氧化法的69.2%,提升至98.0%,。同时,超临界水氧化还可将有机物中的Cl、S、P等分别氧化为HCl、H2SO4和H3PO4,而有机氮则被氧化为氮气和少量一氧化二氮。研讨标明,超临界水氧化对填埋场渗滤液膜滤浓液中COD和氨氮的去除效率分别高达99.23%,和98.64%,。
常温AOP
目前,国内的渗滤液浓液处置以常温AOP为主。但单一常温AOP技术的处置效果较为有限;普通为芬顿及芬顿衍生的氧化、臭氧氧化、UV-TiO2以及超声几种技术。芬顿及其衍生的氧化技术会产生大量含铁污泥需求支付高昂的处置费用中止再处置。
为了提升净化效率降低固废量,武汉纯水设备可思索光化学氧化、电化学氧化以及超声氧化等技术与臭氧/芬顿氧化耦合运用。研讨表面UV-TiO2与臭氧氧化的有效别离使得水体DOC的去除效率提升至52.2%。光-芬顿氧化可将耗铁量和产泥量分别降低至原有的1/32和1/25。常温AOP不能将有机物完好氧化,但可有效进步水体可生化性。因此,渗滤液经常温AOP处置后可进入生化反响器中止处置。
此外,超临界操作条件对无机盐离子的低溶解性在一定程度上降低了超临界水氧化反响体系的电化学腐蚀,但也招致了严重的反响器腐蚀与结垢;同时,腐蚀效应随着超临界水氧化反响体系温度、密度以及腐蚀性离子浓度的增加而恶化。